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ABSTRACT 

Given a two-dimension&l compat ib le  family of t~ represen ta t ions  which 

is mot iv ic  and  which respects  an or thogonal  form up to s imil i tudes,  we 

show how to express its L-fmlct ion in te rms  of a Hecke character .  We give 

several  examples  and  in pa r t i cu la r  we analyze  a represen ta t ion  associa ted  

to a ce r ta in  K3  surface which arose in the s tudy  of Kloos te r lnan  sums.  

Introduction 

To compute the ~-function ~v of an algebraic variety V over a number field K one 

breaks the cohomology groups of V motivically as much as possible. If the pieces 

are all one-dimensional (example: diagonal hypersurfaces) there is an effective 

and quite efficient algorithm to perform the computation. For each piece one 

first writes an explicit, finite list of Hecke characters of type A0 of K such that 

the contribution of the piece to ~v is a member of the list. This gives a finite 

list of possibilities for (y .  In a second step, one counts the number of points of 

V over residue fields of K and one compares this to the result coming from each 

candidate for ~v. After sufficiently many primes all possibilities but one for ~y 

are eliminated, and the remaining one is the answer. 

On the other hand, if there are higher-dimensional pieces, no general algorithm 

to compute ~v is presently known, although the Langlands program might even- 

tually yield one. In fact in special cases, for example if all the pieces are at most 

two dimensional and K = Q, there is still a moderately efficient algorithm, in 

Received August 18, 1993 

149 



150 R. LIVNI~ Isr. J. Math. 

which the amount of computation is bounded in advance, but whose success is 

guaranteed only modulo the Langlands conjectures (see [L]). 

In this article we will show that under a certain assumption it is possible to 

reduce the second, conditional algorithm to the first, unconditional one. The 

assumption is that the two-dimensional pieces carry symmetric non-degenerate 

pairings. As a numerical example, we will give an alternative way to [PTV] for 

computing (the main part of) the zeta function of 

X : { ( X l , . . . , x 5 )  E p4[ E x  i ~_ Ex~-I O) 

which arises from the fifth moment of Kloosterman sums. Notice that  in the 

second step we end up needing only the number of points of X modulo 2, as 

opposed to considering points modulo primes up to 61 as in [PTV]. We will also 

discuss similar and other types of examples. 
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1. O r t h o g o n a l  t w o - d i m e n s i o n a l  representations 

For a number field K C C put GK = Gal((~/K) and let CK = K • \ A~: be 

the group of id~le classes of K. Characters of Cg will always be of type A0 and 

denoted by greek letters #, e , . . . .  We will say such a character is Q-valued if its 

values on A~: 'f  are rational. For a place A of the field of coefficients we will denote 

the corresponding A-adic characters by #~, e~,. . . .  These form compatible systems 

#G~heG~l,... of &adic (or A-adic) representations of GK. Let X: CQ --* C • 

be the cyclotomic character. If e: CQ ~ C • has finite order we denote by 

eDir: Z/(cond e)Z --* C the corresponding Dirichlet character. 

PROPOSITION 1.1: Suppose #: CK ~ C x is Q-valued. Then # (X o NK/Q) k 

for an integer k and a quadratic character ~. 

Proof." Let L D K be finite Galois over Q and let l ~ 0 be an integer such that 

(# o NL/I,,) t = #~ is unramified. Let P be a principal ideal of degree 1 in L above 
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a prime p E Q (so Lp  ~ Qp), let 7r E P be a generator, and put  a = #~,(Tr). Then 

c~ E Q• and by the product formula a = 1-Io: L--,C• (aTr) n~ for some integers no. 

The fractional ideal (a) C Q must be a power of (p), so all the no 's  are equal. 

Hence the co-type of tt ~ is composed with the norm NL/Q, so that  the co-type of 

# is composed with NK/Q. There is then an integer k so that  e = #(X o ]VK/Q)-k 

is of finite order. Being Q-valued, it is quadratic. 

Remark  1.2: If [K: Q] = 2 and #: CK --* C • has oc-type not composed with 

the norm, the method of the preceeding proof shows that  the field of values of # 

contains K.  

In what follows a m o t i v e  means a pure Grothendieck motive satisfying the 

Weil conjectures and the compatibilities between H~t, HdeRham, HBetti and the 

Hodge filtration. Since Faltings's theory [Fa] is functorial, this means that  we also 

have a Hodge-Tate  structure on g-adic cohomology which is compatible with the 

Hodge type (we only need this for g >> 0, when the varieties and correspondences 

defining M have good reduction). For a character # of CQ which is Q-valued the 

twist Q(#) of the motive Q by # is still defined over Q. As usual, Q(n) = Q(x n ). 

THEOREM 1.3: Let M be a motive of  rank 2 over Q with Hodge numbers 

d i m H  p,q = dimHq,V = 1 whe rep  > q. Assume ( , ): M |  --* Q(a)  is 

a non-degenerate symmetr ic  pairing where a: CQ ~ C x is Q-valued. Let D be 

the discriminant of  ( , / on gBett i (M) and let p be the associated compatible 

family of  g-adic representations. Then 

1. D is positive. Put t ing K = Q(x/----15 ), there is a unique character r CK 

K x C C x of  co-type z --~ z p-q such that p | K _"~ X -qGal | I n d ~  CGal. 

2. p is irreducible, of  conductor cond p = Disc(K/Q) �9 NK/Q (cond r  and de- 

- -(P+q) where e: CQ C x is a quadratic character terminant det p = XGal 6Gal~ 

satisfying eDir ( - 1 )  = ( - 1 )  p+q+l .  

3. Let a: K ~ K be the non-trivial automorphism and put  r 1 7 6  = Ca. Then 

r is the complex conjugate r o r e  and r = a. 

4. d e t p - -  aGal#Gal, where p: CQ --+ C • is the quadratic character defining 

K .  

Proo~ For a symmetric  non-degenerate pairing ( , ) on a finite-dimensional 

vector space V the group of orthogonal similitudes GO = GO(V, ( , )) is 

the group of maps g E GL(V) satisfying (gv, gw) = A(g)(v,w) for all v , w  in 

V. We view it as an algebraic group. The factor of similitude A(g) satisfies 
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)~(g)dim V = .  (det g)2. When dim V is even, the connected component of Idv in 

GO is GSO = {g  ~ GO I A(g)(dimV)/2 = de tg} .  In our case we let GO be the 

algebraic group over Q defined by the given pairing ( , ) on HBetti(M). We 

= -1 de tp  then have c~Gal (g)2 (det p(g))2 for any g E GQ, and putting #cal = c~c~l 

we see that # ~ l  = 1. Let L be the field cut by #G~h so Ker#G~l = GL,  and p 

maps GL into GSO. Since GSO -~ ReSg/Q Gin, it follows that  GSO is abelian: in 

fact GSO(Q) ~ K • Therefore PlGL is a rational abelian representation in the 

sense of Serre [ALR]. It follows that PIG,. is locally algebraic, which means that  

it can be diagonalized: thus 

pjGL,,.,(~a 1 _  ~OGaltO ) 

for some characters ~, ~' of CL. 

We claim that  the co-type of ~, ~ cannot both be composed with the norm 

NL/Q.  If they were we would have ~ = (X o NL /Q)k6  and ~p' = (X o NL/Q)k '  6 ' for 

integers k, k' and Hecke characters 6, 6' of finite orders. By purity we would get 

k = k ~ = (p + q) /2 .  But then the Hodge-Tate type of M would be (k, k) and not 

(p ,q) ,  contradicting [Fa]. Therefore L r Q, so that  L is quadratic. The field of 

values for ~ (or ~o ~) contains L by Remark 1.2 and is contained in K (since p is 

rational), so K = L. This proves 4. 

The values of ~ at Frobenius elements must be Weil numbers in K.  They 

cannot all be in Q, or else Q would be composed with the norm. Therefore K 

is quadratic imaginary. By [Fa] and purity again we see that, permuting ~, ~' 

if necessary, the c~-type of ~ is z ---+ z p 5 q. We also see that  ~ is K-valued and 

~ = ~o = ~ r ~o. It follows that  p | K ~- IndGG~ ~OGal and that  p is irreducible 

(see [Dur], where the entirely parallel case of dihedral Artin representations is 

handled). Put  g, = (X o NK/Q)  q r Then the co-type of r is z ~ z n-q and 
p | K " -q Go 

- XGal | IndGK CG~l, proving 1 and the first part of 3. 

The formula for cond p is the same as in [Dur]. Since det p is Q-valued it is 

of the form k XGal~Gal for e quadratic by Proposition 1.1. By purity (or oo-type) 

k = - ( p  + q). Let c E GQ be a complex conjugation. Then p(c) interchanges 

H P ' q ( M )  and H q ' P ( M ) ,  so T r p ( c )  = O. Since c 2 = 1 it follows that  - 1  = 

det p(c) -(v+q) (_l)V+q = XGal (C)~GM(C) = ~Dir(--1). This shows 2, and since det p = 

#G~l(~blco)Q~ l as in [Dur], we obtain r = c~, proving the last part of 3 and the 

theorem. 1 
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COROLLARY 1.4: 

(1) The L-function L(p, s) is L(r s) = L(r  s + q). In particular it has the 

usual sort of analytic continuation and functional equation. 
(2) There exists a unique cuspidal newform f such that L(p, s) = L(f ,  s + q). 

This f is of weight p + 1 - q, level condp and character e = (Ot#XP+q)Dir. 

It has complex multiplication by K. 

Example 1.5: Let E be an elliptic curve over Q with complex multiplication by 

K = Q(x/Z-D).  The motive M = H I ( E )  | Q satisfies the standard compati- 

bilities between the various types of cohomology. Its Hodge type is dim H 1,~ -- 

d i m H  ~ = 1. Define e as the quadratic character associated to K.  The cup 

pairing M | M u Q ( - 1 )  is non-degenerate and alternating, and defining 

( , ): M | M ~ Q(-1)(e)  by (x, y) = x u (V/-ZD y) gives a non-degenerate 

symmetric pairing. 

The discriminant Disc( , ) of ( , ) is D up to a factor in (QX)2. To see this 

choose any t E H~ett i (E,Q ). Then t U t = v/Z--Dr U v/Z--Dr = 0, and we may 

view the generator u = t U v/-Z-Dt of Hl~etti(E,Q) -~ Q as a non-zero rational 

number (in fact we may choose a t for which u = 1, but we do not need this). 

With respect to the basis t, x/-Z-Dt of  g ~ e t t i ( E  , Q) we get 

<t,t> <t, v' t> 
D i s c ( , ) = d e t  (vfL-~t,t) (v/-Z-~t, x/-Z~t) ) 

( tUv/Z--Dt t U ( - D t )  ) 
= d e t  VrL--~tUv/-Z-~t x/-Z-~tU(_Dt) 

= d e t (  u0 DuO ) =Du2"  

As is well-known the corresponding cusp form f has weight 2 and trivial character, 

reflecting the fact that  p + 1 - q = 2 and 

- 1  - 1  det p = aGal#Gal = (XGaleGal)#Gal = XGal" 

Example 1.6: Let X be a K3 surface over Q with maximal Picard number 

p = rank N.S.(X) = 20. Put  M = ( H 2 ( X ) / N . S . ( X ) )  | Q, the motive of the 

transcendental cycles. M satisfies the required compatibilities, and its Hodge 

type i s d i m H  2,~ = d i m H  ~ = 1. The cup product pair ingU = ( , ): M @  

M --* Q ( - 2 )  is non-degenerate and symmetric. Let c l , . . . , c20  be a basis for 

N.S.(X) | Q, and let d be the determinant of the matrix of intersection numbers 
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cl �9 c i. By the Hodge index theorem d is negative. Since the discriminant of cup 

product on H2(X)  is - 1  (in fact (H2(X),  U) _~ H 3 @ ( - E s )  2, see [BPV], ch. 

VIII, proposition 3.2.ii), we get that D = Disc(M, ( , )) is positive and equal to 

- d  up to a rational square. By the theorem det p = C~Gal#Gal = XG2aleC~l, where 

e = # and eDit(P) = ( - ~ ) .  This gives a form of weight 3 and odd character eDit. 

Remark 1.7: In Example 1.6 the reference to [Fa] in the proof of the theorem 

can be replaced by one to [S-I]. They prove that over some extension of Q the 

L-function of X is L(r s) L( r  2, s), where !91 is a Hecke character attached to 

an elliptic curve with complex multiplication. This determines the oo-type of our 

19 to be z ~ z -2, as required. 

Remark 1.8: Serre. In the field K of Theorem 1.3 each ideal class has order di- 

viding p - q. Indeed, let P be an ideal of K whose class has order t. Write p t  = 

7tO, and let 71-p be a uniformizer at P.  Then ~ ) p ( T r p )  t ---- 19p(Tr)  = 19oo(71") - 1  ---- 

~r p-q, which implies 19p('lrp)tOK m p t (p -q) .  Hence PP-q = 19p(Trp)Og is princi- 

pal, so t [ p -  q. 

2. T h e  c a s e  o f  

The minimal projective non-singular model ) (  of the surface X from the intro- 

duction is a K3 surface of maximal Picard number. The computations in [PTV] 

determine the parts of H*(,K) which are spanned by algebraic cycles. They 

show that up to squares the discriminant of the intersection pairing on N. S . (X )  

is - 1 5  ([PTV], Theorem 2.5). To compute (2  (or ( x )  it remains to compute 

the contribution of the transcendental cycles, discussed in Example 1.6. By our 

Theorem 1.3, K = Q ( x / - 1 5 )  and we want to determine r whose co-type is 

z ~ z -2. Note that our formula for det p checks with [PTV], propositions 3.3.ii 

and 4.1. The class number of K is 2, and Cl(K) is generated by P2 = (2, a)  

with a = (1 + v / -Z~) /2 .  We have p2 = (a). Define an unramified character 

r A~ ~ C x by r = z -2 and 

~2 if P = ( r )  
r  = ~r2/c~ if P 2 P = ( 7 r )  

for any ideal P of K and any uniformizer 7rp of K at P.  Then ~b0 is well-defined 

(the only units in O = OK are + l ) ,  and r  • = 1. It follows that r may be 

viewed as a Hecke character. Put  v = r  1 r Since v is K• and of finite 
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order it is quadratic. Since X has good reduction outside 3, 5, our p and hence 

v are unramified outside primes above 3 and 5. Hence v factors through 

c ' : K x " A ~ / ( (  H o~)x(o~, xoX) ~ P5 X C x ) 
(P,15)=l 

where P3, P5 are the primes of K above 3, 5 respectively. C ~ is an extension 

COx Ox COx mx ~2t-~x where x is embedded of C l (g )  by A = ( p~ x , , )  / ( ~, x ~ , ,  ~ ,  CO,,: 

diagonally. Hence 

A=(F; • / ((F~ x F~')~.{+(1, 1)} ) ~ F~/(F~)~_~ (+1>. 

We claim that  C ~ is cyclic of order 4. Indeed, let x = ( . . . , x , , . . . )  be the 

idble given by xv = ~ if v = P3 and xv = 1 otherwise. Then x 2 ~ 1 in C' .  

Otherwise the ideal generated by x 2, which is 3COg, would have a generator a 

which is a square at 5. This is false for both generators -t-3 of 3COg. Hence x 

has order 4 in C '  and C'  is cyclic as claimed. It  follows that  v factors through 

e l (K) .  

Now let #o: K x \ A~ --* CI(K) _ {+1} be the non-trivial character. Since P2 
Go is not principal #0 (P2) = - 1 .  Set Pl = I n d ~  r and P2 = Indc  K (/Zor 

Since v must be 1 or #0 we must have p - Pl or p - P2. To decide which case 

occurs we consider what happens at the (good) prime 2. Since 2 splits in K,  

= ( ( F r o b p 2 ) )  = r (Frobp2) + r (Frobe~) = a + ~  = 1, Tr pl(Frob2) Tr plla K 

and likewise Trp2(Frob2) = - 1 .  By a direct computat ion based on counting 

points modulo 2 on X,  one gets Trp(Frobp2) = 1 (see [PTV], table 1 after 

lemma 4.4). Hence p ~_ Pl- This checks with [PTV], remark after proposition 

4.12. The conductor of p is 15. NKIQ(1) = 15, so the corresponding modular form 

is in S~ (r0 (15), ( - 1~)), in accordance wit h IPTVl, Theorem 53 and Proposition 
5.1. 

3. Further examples 

Let V,~ be the variety { ( X l , . . . , x n )  E ]tm-ll~--~. xi = ~'~x 3 = 0}. Let sgn: S,~ -* 

{+ 1} be the signature character of the permutat ion group on the variables, and 

put M = H n - 3  (Yn) sgn. For n = 7, 11 and 15 respectively we get rank 2 motives 
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over Q, of Hodge types dim H p,q = dim H q,p = 1, where (p, q) = (3, 1), (5, 3) and 

(7, 5) respectively, and the cup product is symmetric and non-degenerate. These 

examples give rise to cusp forms of weight 3. The appeal to [Fa] in the proof of 

Theorem 1.3 appears necessary, especially for n -- 15. 
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